If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+7X=99
We move all terms to the left:
X^2+7X-(99)=0
a = 1; b = 7; c = -99;
Δ = b2-4ac
Δ = 72-4·1·(-99)
Δ = 445
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{445}}{2*1}=\frac{-7-\sqrt{445}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{445}}{2*1}=\frac{-7+\sqrt{445}}{2} $
| 5(x+1)=6+2x | | 11/4x=1/4x+24 | | -6x21=51+3x | | k–25=4k= | | -6x-21=51+3 | | 6x+2)=180 | | 8x=1/2(x+75) | | 5(5x-4)=80 | | 17-3x+3=-6x | | 2x−7=15 | | 3(a-3)+3a=24 | | 2x+58=x+132 | | x^2x-240=0 | | -4+11y=58 | | 8x+5-2x=5x-13+x | | 8x+130-90/5x=80 | | 25−(3x+5)=2(x+8)+x | | 15+5j=50 | | 15x+4=8+32 | | 6.1-0.3=c=1 | | -3x-5(3x-9)=51 | | 10-4n=16 | | 4+2u=18 | | 23/7n=-15 | | -3x-5(3x-9=-51 | | 2q−2=8 | | 3x-6=2x+10-7 | | 3.4b=57.8 | | 17y=72+8y | | 3x50=175 | | Y=12(5x)+300 | | 6=-3/5b |